
UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 1

1

2.1 Class & Object

The main purpose of C++ programming is to add object orientation to the C
programming language and classes are the central feature of C++ that supports
object-oriented programming and are often called user-defined types.

A class is used to specify the form of an object and it combines data representation
and methods for manipulating that data into one neat package. The data and
functions within a class are called members of the class.

C++ Class Definitions

When you define a class, you define a blueprint for a data type. This doesn't actually
define any data, but it does define what the class name means, that is, what an object
of the class will consist of and what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the
class body, enclosed by a pair of curly braces. A class definition must be followed
either by a semicolon or a list of declarations. For example, we defined the Box data
type using the keyword class as follows −

class Box {

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

The keyword public determines the access attributes of the members of the class
that follows it. A public member can be accessed from outside the class anywhere
within the scope of the class object. You can also specify the members of a class
as private or protected which we will discuss in a sub-section.

Define C++ Objects

A class provides the blueprints for objects, so basically an object is created from a
class. We declare objects of a class with exactly the same sort of declaration that we
declare variables of basic types. Following statements declare two objects of class
Box −

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

Both of the objects Box1 and Box2 will have their own copy of data members.

Accessing the Data Members

The public data members of objects of a class can be accessed using the direct
member access operator (.). Let us try the following example to make the things clear
−

#include <iostream>

using namespace std;

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 2

2

class Box {

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

int main() {

 Box Box1; // Declare Box1 of type Box

 Box Box2; // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.height = 5.0;

 Box1.length = 6.0;

 Box1.breadth = 7.0;

 // box 2 specification

 Box2.height = 10.0;

 Box2.length = 12.0;

 Box2.breadth = 13.0;

 // volume of box 1

 volume = Box1.height * Box1.length * Box1.breadth;

 cout << "Volume of Box1 : " << volume <<endl;

 // volume of box 2

 volume = Box2.height * Box2.length * Box2.breadth;

 cout << "Volume of Box2 : " << volume <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Volume of Box1 : 210

Volume of Box2 : 1560

It is important to note that private and protected members can not be accessed
directly using direct member access operator (.). We will learn how private and
protected members can be accessed.

Classes and Objects in Detail

So far, you have got very basic idea about C++ Classes and Objects. There are
further interesting concepts related to C++ Classes and Objects which we will discuss
in various sub-sections listed below −

Access Modifiers
Data hiding is one of the important features of Object Oriented Programming which
allows preventing the functions of a program to access directly the internal
representation of a class type. The access restriction to the class members is
specified by the labeled public, private, and protected sections within the class
body. The keywords public, private, and protected are called access specifiers.

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 3

3

A class can have multiple public, protected, or private labeled sections. Each section
remains in effect until either another section label or the closing right brace of the
class body is seen. The default access for members and classes is private.

class Base {

 public:

 // public members go here

 protected:

 // protected members go here

 private:

 // private members go here

};

The public Members

A public member is accessible from anywhere outside the class but within a
program. You can set and get the value of public variables without any member
function as shown in the following example −

#include <iostream>

using namespace std;

class Line {

 public:

 double length;

 void setLength(double len);

 double getLength(void);

};

// Member functions definitions

double Line::getLength(void) {

 return length ;

}

void Line::setLength(double len) {

 length = len;

}

// Main function for the program

int main() {

 Line line;

 // set line length

 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 // set line length without member function

 line.length = 10.0; // OK: because length is public

 cout << "Length of line : " << line.length <<endl;

 return 0;

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 4

4

}

When the above code is compiled and executed, it produces the following result −

Length of line : 6

Length of line : 10

The private Members

A private member variable or function cannot be accessed, or even viewed from
outside the class. Only the class and friend functions can access private members.

By default all the members of a class would be private, for example in the following
class width is a private member, which means until you label a member, it will be
assumed a private member −

class Box {

 double width;

 public:

 double length;

 void setWidth(double wid);

 double getWidth(void);

};

Practically, we define data in private section and related functions in public section
so that they can be called from outside of the class as shown in the following program.

#include <iostream>

using namespace std;

class Box {

 public:

 double length;

 void setWidth(double wid);

 double getWidth(void);

 private:

 double width;

};

// Member functions definitions

double Box::getWidth(void) {

 return width ;

}

void Box::setWidth(double wid) {

 width = wid;

}

// Main function for the program

int main() {

 Box box;

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 5

5

 // set box length without member function

 box.length = 10.0; // OK: because length is public

 cout << "Length of box : " << box.length <<endl;

 // set box width without member function

 // box.width = 10.0; // Error: because width is private

 box.setWidth(10.0); // Use member function to set it.

 cout << "Width of box : " << box.getWidth() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Length of box : 10

Width of box : 10

The protected Members

A protected member variable or function is very similar to a private member but it
provided one additional benefit that they can be accessed in child classes which are
called derived classes.

You will learn derived classes and inheritance in next chapter. For now you can check
following example where I have derived one child class SmallBox from a parent
class Box.

Following example is similar to above example and here width member will be
accessible by any member function of its derived class SmallBox.

#include <iostream>

using namespace std;

class Box {

 protected:

 double width;

};

class SmallBox:Box { // SmallBox is the derived class.

 public:

 void setSmallWidth(double wid);

 double getSmallWidth(void);

};

// Member functions of child class

double SmallBox::getSmallWidth(void) {

 return width ;

}

void SmallBox::setSmallWidth(double wid) {

 width = wid;

}

// Main function for the program

int main() {

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 6

6

 SmallBox box;

 // set box width using member function

 box.setSmallWidth(5.0);

 cout << "Width of box : "<< box.getSmallWidth() << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Width of box : 5

Member Functions
A member function of a class is a function that has its definition or its prototype within
the class definition like any other variable. It operates on any object of the class of
which it is a member, and has access to all the members of a class for that object.

Let us take previously defined class to access the members of the class using a
member function instead of directly accessing them −

class Box {

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

 double getVolume(void);// Returns box volume

};

Member functions can be defined within the class definition or separately
using scope resolution operator, : −. Defining a member function within the class
definition declares the function inline, even if you do not use the inline specifier. So
either you can define Volume() function as below −

class Box {

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

 double getVolume(void) {

 return length * breadth * height;

 }

};

If you like, you can define the same function outside the class using the scope
resolution operator (::) as follows −

double Box::getVolume(void) {

 return length * breadth * height;

}

Here, only important point is that you would have to use class name just before ::
operator. A member function will be called using a dot operator (.) on a object where
it will manipulate data related to that object only as follows −

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 7

7

Box myBox; // Create an object

myBox.getVolume(); // Call member function for the object

Let us put above concepts to set and get the value of different class members in a
class −

#include <iostream>

using namespace std;

class Box {

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

 // Member functions declaration

 double getVolume(void);

 void setLength(double len);

 void setBreadth(double bre);

 void setHeight(double hei);

};

// Member functions definitions

double Box::getVolume(void) {

 return length * breadth * height;

}

void Box::setLength(double len) {

 length = len;

}

void Box::setBreadth(double bre) {

 breadth = bre;

}

void Box::setHeight(double hei) {

 height = hei;

}

// Main function for the program

int main() {

 Box Box1; // Declare Box1 of type Box

 Box Box2; // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.setLength(6.0);

 Box1.setBreadth(7.0);

 Box1.setHeight(5.0);

 // box 2 specification

 Box2.setLength(12.0);

 Box2.setBreadth(13.0);

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 8

8

 Box2.setHeight(10.0);

 // volume of box 1

 volume = Box1.getVolume();

 cout << "Volume of Box1 : " << volume <<endl;

 // volume of box 2

 volume = Box2.getVolume();

 cout << "Volume of Box2 : " << volume <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Volume of Box1 : 210

Volume of Box2 : 1560

2.2 Static Members of a C++ Class
We can define class members static using static keyword. When we declare a
member of a class as static it means no matter how many objects of the class are
created, there is only one copy of the static member.

A static member is shared by all objects of the class. All static data is initialized to
zero when the first object is created, if no other initialization is present. We can't put
it in the class definition but it can be initialized outside the class as done in the
following example by redeclaring the static variable, using the scope resolution
operator :: to identify which class it belongs to.

Let us try the following example to understand the concept of static data members −

#include <iostream>

using namespace std;

class Box {

 public:

 static int objectCount;

 // Constructor definition

 Box(double l = 2.0, double b = 2.0, double h = 2.0) {

 cout <<"Constructor called." << endl;

 length = l;

 breadth = b;

 height = h;

 // Increase every time object is created

 objectCount++;

 }

 double Volume() {

 return length * breadth * height;

 }

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 9

9

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

// Initialize static member of class Box

int Box::objectCount = 0;

int main(void) {

 Box Box1(3.3, 1.2, 1.5); // Declare box1

 Box Box2(8.5, 6.0, 2.0); // Declare box2

 // Print total number of objects.

 cout << "Total objects: " << Box::objectCount << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Constructor called.

Constructor called.

Total objects: 2

Static Function Members

By declaring a function member as static, you make it independent of any particular
object of the class. A static member function can be called even if no objects of the
class exist and the static functions are accessed using only the class name and the
scope resolution operator ::.

A static member function can only access static data member, other static member
functions and any other functions from outside the class.

Static member functions have a class scope and they do not have access to
the this pointer of the class. You could use a static member function to determine
whether some objects of the class have been created or not.

Let us try the following example to understand the concept of static function members

#include <iostream>

using namespace std;

class Box {

 public:

 static int objectCount;

 // Constructor definition

 Box(double l = 2.0, double b = 2.0, double h = 2.0) {

 cout <<"Constructor called." << endl;

 length = l;

 breadth = b;

 height = h;

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 10

10

 // Increase every time object is created

 objectCount++;

 }

 double Volume() {

 return length * breadth * height;

 }

 static int getCount() {

 return objectCount;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

// Initialize static member of class Box

int Box::objectCount = 0;

int main(void) {

 // Print total number of objects before creating object.

 cout << "Inital Stage Count: " << Box::getCount() << endl;

 Box Box1(3.3, 1.2, 1.5); // Declare box1

 Box Box2(8.5, 6.0, 2.0); // Declare box2

 // Print total number of objects after creating object.

 cout << "Final Stage Count: " << Box::getCount() << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Inital Stage Count: 0

Constructor called.

Constructor called.

Final Stage Count: 2

Friend Functions
A friend function of a class is defined outside that class' scope but it has the right to
access all private and protected members of the class. Even though the prototypes
for friend functions appear in the class definition, friends are not member functions.

A friend can be a function, function template, or member function, or a class or class
template, in which case the entire class and all of its members are friends.

To declare a function as a friend of a class, precede the function prototype in the
class definition with keyword friend as follows −

class Box {

 double width;

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 11

11

 public:

 double length;

 friend void printWidth(Box box);

 void setWidth(double wid);

};

To declare all member functions of class ClassTwo as friends of class ClassOne,
place a following declaration in the definition of class ClassOne −

friend class ClassTwo;

Consider the following program −

#include <iostream>

using namespace std;

class Box {

 double width;

 public:

 friend void printWidth(Box box);

 void setWidth(double wid);

};

// Member function definition

void Box::setWidth(double wid) {

 width = wid;

}

// Note: printWidth() is not a member function of any class.

void printWidth(Box box) {

 /* Because printWidth() is a friend of Box, it can

 directly access any member of this class */

 cout << "Width of box : " << box.width <<endl;

}

// Main function for the program

int main() {

 Box box;

 // set box width without member function

 box.setWidth(10.0);

 // Use friend function to print the wdith.

 printWidth(box);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Width of box : 10

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 12

12

Array of Objects in c++

▪ Like array of other user-defined data types, an array of type class can also
be created.

▪ The array of type class contains the objects of the class as its individual
elements.

▪ Thus, an array of a class type is also known as an array of objects.
▪ An array of objects is declared in the same way as an array of any built-in

data type.

Syntax:

class_name array_name [size] ;

Example:

#include <iostream>

class MyClass {
 int x;
public:
 void setX(int i) { x = i; }
 int getX() { return x; }
};

void main()
{
 MyClass obs[4];
 int i;

 for(i=0; i < 4; i++)
 obs[i].setX(i);

 for(i=0; i < 4; i++)
 cout << "obs[" << i << "].getX(): " << obs[i].getX() << "\n";

 getch();
}

Output:

obs[0].getX(): 0

obs[1].getX(): 1

obs[2].getX(): 2

obs[3].getX(): 3

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 13

13

Object As Function Argument
In C++ we can pass class’s objects as arguments and also return them from a function
the same way we pass and return other variables. No special keyword or header file
is required to do so.

Passing an Object as argument

To pass an object as an argument we write the object name as the argument while
calling the function the same way we do it for other variables.

Syntax:
function_name(object_name);

Example: In this Example there is a class which has an integer variable ‘a’ and a
function ‘add’ which takes an object as argument. The function is called by one object
and takes another as an argument. Inside the function, the integer value of the
argument object is added to that on which the ‘add’ function is called. In this method,
we can pass objects as an argument and alter them.

// C++ program to show passing

// of objects to a function

#include <bits/stdc++.h>

using namespace std;

class Example {

public:

 int a;

 // This function will take

 // an object as an argument

 void add(Example E)

 {

 a = a + E.a;

 }

};

// Driver Code

int main()

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 14

14

{

 // Create objects

 Example E1, E2;

 // Values are initialized for both objects

 E1.a = 50;

 E2.a = 100;

 cout << "Initial Values \n";

 cout << "Value of object 1: " << E1.a

 << "\n& object 2: " << E2.a

 << "\n\n";

 // Passing object as an argument

 // to function add()

 E2.add(E1);

 // Changed values after passing

 // object as argument

 cout << "New values \n";

 cout << "Value of object 1: " << E1.a

 << "\n& object 2: " << E2.a

 << "\n\n";

 return 0;

}

Output:

Initial Values

Value of object 1: 50

& object 2: 100

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 15

15

New values

Value of object 1: 50

& object 2: 150

Returning Object as argument

Syntax:
object = return object_name;

Example: In the above example we can see that the add function does not return any
value since its return-type is void. In the following program the add function returns an
object of type ‘Example'(i.e., class name) whose value is stored in E3.
In this example, we can see both the things that are how we can pass the objects as
well as return them. When the object E3 calls the add function it passes the other two
objects namely E1 & E2 as arguments. Inside the function, another object is declared
which calculates the sum of all the three variables and returns it to E3.
This code and the above code is almost the same, the only difference is that this time
the add function returns an object whose value is stored in another object of the same
class ‘Example’ E3. Here the value of E1 is displayed by object1, the value of E2 by
object2 and value of E3 by object3.

// C++ program to show passing
// of objects to a function

#include <bits/stdc++.h>
using namespace std;

class Example {
public:
 int a;

 // This function will take
 // object as arguments and
 // return object
 Example add(Example Ea, Example Eb)
 {
 Example Ec;
 Ec.a = Ec.a + Ea.a + Eb.a;

 // returning the object
 return Ec;
 }
};
int main()
{
 Example E1, E2, E3;

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 16

16

 // Values are initialized
 // for both objects
 E1.a = 50;
 E2.a = 100;
 E3.a = 0;

 cout << "Initial Values \n";
 cout << "Value of object 1: " << E1.a
 << ", \nobject 2: " << E2.a
 << ", \nobject 3: " << E3.a
 << "\n";

 // Passing object as an argument
 // to function add()
 E3 = E3.add(E1, E2);

 // Changed values after
 // passing object as an argument
 cout << "New values \n";
 cout << "Value of object 1: " << E1.a
 << ", \nobject 2: " << E2.a
 << ", \nobject 3: " << E3.a
 << "\n";

 return 0;
}
Output:

Initial Values

Value of object 1: 50,

object 2: 100,

object 3: 0

New values

Value of object 1: 50,

object 2: 100,

object 3: 200

The Class Constructor

A class constructor is a special member function of a class that is executed
whenever we create new objects of that class.

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 17

17

A constructor will have exact same name as the class and it does not have any return
type at all, not even void. Constructors can be very useful for setting initial values for
certain member variables.

Following example explains the concept of constructor −

#include <iostream>

using namespace std;

class Line {

 public:

 void setLength(double len);

 double getLength(void);

 Line(); // This is the constructor

 private:

 double length;

};

// Member functions definitions including constructor

Line::Line(void) {

 cout << "Object is being created" << endl;

}

void Line::setLength(double len) {

 length = len;

}

double Line::getLength(void) {

 return length;

}

// Main function for the program

int main() {

 Line line;

 // set line length

 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Object is being created

Length of line : 6

Parameterized Constructor

A default constructor does not have any parameter, but if you need, a constructor can
have parameters. This helps you to assign initial value to an object at the time of its
creation as shown in the following example −

#include <iostream>

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 18

18

using namespace std;

class Line {

 public:

 void setLength(double len);

 double getLength(void);

 Line(double len); // This is the constructor

 private:

 double length;

};

// Member functions definitions including constructor

Line::Line(double len) {

 cout << "Object is being created, length = " << len << endl;

 length = len;

}

void Line::setLength(double len) {

 length = len;

}

double Line::getLength(void) {

 return length;

}

// Main function for the program

int main() {

 Line line(10.0);

 // get initially set length.

 cout << "Length of line : " << line.getLength() <<endl;

 // set line length again

 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Object is being created, length = 10

Length of line : 10

Length of line : 6

1. Default Constructors: Default constructor is the constructor which doesn’t take any
argument. It has no parameters.

// Cpp program to illustrate the
// concept of Constructors
#include <iostream>
using namespace std;

class construct {
public:

https://www.geeksforgeeks.org/c-internals-default-constructors-set-1/

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 19

19

 int a, b;

 // Default Constructor
 construct()
 {
 a = 10;
 b = 20;
 }
};

int main()
{
 // Default constructor called automatically
 // when the object is created
 construct c;
 cout << "a: " << c.a << endl
 << "b: " << c.b;
 return 1;
}

Output:

a: 10

b: 20

Note: Even if we do not define any constructor explicitly, the compiler will
automatically provide a default constructor implicitly.

2. Parameterized Constructors: It is possible to pass arguments to constructors.
Typically, these arguments help initialize an object when it is created. To create a
parameterized constructor, simply add parameters to it the way you would to any other
function. When you define the constructor’s body, use the parameters to initialize the
object.

// CPP program to illustrate
// parameterized constructors
#include <iostream>
using namespace std;
 class Point {
private:
 int x, y;

public:
 // Parameterized Constructor
 Point(int x1, int y1)
 {
 x = x1;
 y = y1;
 }

 int getX()
 {
 return x;
 }
 int getY()
 {
 return y;
 }
};

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 20

20

int main()
{
 // Constructor called
 Point p1(10, 15);

 // Access values assigned by constructor
 cout << "p1.x = " << p1.getX() << ", p1.y = " << p1.getY();

 return 0;
}

Output:

p1.x = 10, p1.y = 15

When an object is declared in a parameterized constructor, the initial values have
to be passed as arguments to the constructor function. The normal way of object
declaration may not work. The constructors can be called explicitly or implicitly.

 Example e = Example(0, 50); // Explicit call

 Example e(0, 50); // Implicit call

Uses of Parameterized constructor:

1. It is used to initialize the various data elements of different objects with different
values when they are created.

2. It is used to overload constructors.

Can we have more than one constructors in a class?
Yes, It is called Constructor Overloading.

3. Copy Constructor: A copy constructor is a member function which initializes an
object using another object of the same class. Detailed article on Copy Constructor.
Whenever we define one or more non-default constructors(with parameters) for a
class, a default constructor(without parameters) should also be explicitly defined as
the compiler will not provide a default constructor in this case. However, it is not
necessary but it’s considered to be the best practice to always define a default
constructor.

// Illustration

#include "iostream"

using namespace std;

class point {

private:

 double x, y;

https://www.geeksforgeeks.org/constructor-overloading-c/
https://www.geeksforgeeks.org/copy-constructor-in-cpp/

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 21

21

public:

 // Non-default Constructor & default Constructor

 point (double px, double py) {

 x = px, y = py;

 }

};

int main(void) {

 // Define an array of size 10 & of type point

 // This line will cause error

 point a[10];

 // Remove above line and program will compile without error

 point b = point(5, 6);

}

Output:

Error: point (double px, double py): expects 2 arguments, 0 provided

The Class Destructor

A destructor is a special member function of a class that is executed whenever an
object of it's class goes out of scope or whenever the delete expression is applied to
a pointer to the object of that class.

A destructor will have exact same name as the class prefixed with a tilde (~) and it
can neither return a value nor can it take any parameters. Destructor can be very
useful for releasing resources before coming out of the program like closing files,
releasing memories etc.

Following example explains the concept of destructor −

#include <iostream>

using namespace std;

class Line {

 public:

 void setLength(double len);

 double getLength(void);

 Line(); // This is the constructor declaration

 ~Line(); // This is the destructor: declaration

 private:

 double length;

};

UNIT – II Classes & Objects

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 22

22

// Member functions definitions including constructor

Line::Line(void) {

 cout << "Object is being created" << endl;

}

Line::~Line(void) {

 cout << "Object is being deleted" << endl;

}

void Line::setLength(double len) {

 length = len;

}

double Line::getLength(void) {

 return length;

}

// Main function for the program

int main() {

 Line line;

 // set line length

 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Object is being created

Length of line : 6

Object is being deleted

